phi - (((1 / phi) * (1 - ((1 / phi)^70))) / (1 - (1 / phi))) = 0 is not verified by what I figure out with my Excel Trigonometry.
06/12/12
((1 / phi) * (1 - ((1 / phi)^70))) / (1 - (1 / phi)) = 1.61803399, more precisely, means that:
- 1/phi + 1/phi^2 + 1/phi^3 + .... + 1/phi^70 is 1.618033988..
- 1/phi + 1/phi^2 + 1/phi^3 + .... + 1/phi^70 + .... + 1/phi^n
becomes indefinately closer to phi as 'n' increases to infinity.
Phi to 20,000 places
Note:
- 1/phi, 1/phi^2, 1/phi^3, ... forms Fibonacci Numbers
- Formula for the geometrical series for this:
(((1 / phi) * (1 - ((1 / phi)^n))) / (1 - (1 / phi))) - phi+1, (phi+1)^2, (phi+1)^3, ... also forms Fibonacci Numbers
No comments:
Post a Comment